TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 1

MATHIAS BRAUN AND WENHAO ZHAO

Homework 1.1 (An example of propagation of convergence*). Let $D \subset \mathbf{C}$ be a bounded domain and denote by \bar{D} is closure. Let $(f_n)_{n \in \mathbf{N}}$ be a sequence of continuous functions $f_n \colon \bar{D} \to \mathbf{C}$ such that f_n is holomorphic in D for every $n \in \mathbf{N}$. Assume $(f_n)_{n \in \mathbf{N}}$ converges uniformly on the boundary ∂D .

- a. Show $(f_n)_{n \in \mathbb{N}}$ converges uniformly on \bar{D} to some function $f: \bar{D} \to \mathbb{C}^1$.
- b. Show f is holomorphic on D.
- **Homework 1.2** (Sequences of holomorphic functions). a. Let $(f_n)_{n\in\mathbb{N}}$ constitute a sequence of holomorphic functions $f_n\colon B_1(0)\to \mathbb{C}$ converging locally uniformly to a given holomorphic function $f\colon B_1(0)\to \mathbb{C}$. Does the sequence $(f_n^{(n)})_{n\in\mathbb{N}}$ of derivatives of f_n with increasing order converge locally uniformly to a continuous function $g\colon B_1(0)\to \mathbb{C}$? Give a proof or find a counterexample.
 - b. Give an example of an open set $U \subset \mathbb{C}$ and a sequence $(f_n)_{n \in \mathbb{N}}$ of holomorphic functions $f_n \colon U \to \mathbb{C}$ that converges locally uniformly to a function $f \colon U \to \mathbb{C}$ and such that f_n has exactly one zero for every $n \in \mathbb{N}$ while f has no zero. Can one construct a counterexample under the requirement of uniform convergence on U?

Homework 1.3 (Convergence of varying path-integrals). Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of holomorphic functions $f_n\colon U\to \mathbb{C}$ that converges locally uniformly on a given open set $U\subset\mathbb{C}$ to some function $f\colon U\to\mathbb{C}$. Moreover, let $(\gamma_n)_{n\in\mathbb{N}}$ be a sequence of C^1 -paths $\gamma_n\colon [0,1]\to U$ such that $\gamma_n\to\gamma$ and $\gamma'_n\to\gamma'$ uniformly on [0,1] as $n\to\infty$, where $\gamma\colon [0,1]\to U$ is a C^1 -path. Show

$$\lim_{n\to\infty} \int_{\gamma_n} f_n(z) \, \mathrm{d}z = \int_{\gamma} f(z) \, \mathrm{d}z.$$

Homework 1.4 (Osgood's theorem). Let $U \subset \mathbb{C}$ be open and $(f_n)_{n \in \mathbb{N}}$ be a sequence of holomorphic functions $f_n \colon U \to \mathbb{C}$ that converges pointwise to $f \colon U \to \mathbb{C}$. The goal of this exercise is to show there exists an open, dense subset $U_0 \subset U$ such that $(f_n)_{n \in \mathbb{N}}$ is locally uniformly bounded on U_0 . As we will see in the course, this implies the local uniform convergence of $(f_n)_{n \in \mathbb{N}}$ to f on U_0 ; in particular, f is holomorphic on U_0 .

a. Define the set of points where $(f_n)_{n \in \mathbb{N}}$ is locally uniformly bounded, i.e.,

$$U_0:=\{z\in U: \text{there exists } r>0 \text{ with } \sup_{n\in\mathbb{N}}\sup_{z'\in B_r(z)}|f_n(z')|<\infty\}.$$

Show U_0 is open.

- b. Show if U_0 is not dense in U, then there exists a ball $B_{r_0}(z_0) \subset U$ such that for all balls $B_{r'}(z') \subset B_{r_0}(z_0)$ the sequence $(f_n)_{n \in \mathbb{N}}$ is not uniformly bounded on $B_{r'}(z')$.
- c. Use b. to construct a sequence of nested closed balls $\bar{B}_{r_k}(z_k) \subset B_{r_{k-1}}(z_{k-1})$ and a subsequence $(f_{n_k})_{k \in \mathbb{N}}$ such that $|f_{n_k}| \geq k$ on $\bar{B}_{r_k}(z_k)$.
- d. Show the intersection of the sequence of closed balls from c. is nonempty. Derive a contradiction to the pointwise convergence of $(f_n)_{n \in \mathbb{N}}$ and conclude the proof.

Date: September 23, 2024.

¹Hint. Show $(f_n)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to uniform convergence.